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Many of the slides in this lecture are adapted from the sources below. Copyrights belong to the original authors.
• UC Berkeley CS294-162: AI-Systems (LLM Edition), Fall 2023, by Profs. Joseph E. Gonzalez and Matei Zaharia, 

https://learning-systems.notion.site/AI-Systems-LLM-Edition-294-162-Fall-2023-661887583bd340fa851e6a8da8e29abb
• Gregory Yauney,  A Pretrainer’s Guide to Training Data – Measuring the Effects of Data Age, Domain Coverage, Quality & 

Toxicity, NAACL 2024 (Outstanding Paper Award),  https://gyauney.github.io/papers/a-pretrainers-slides.pdf
• Jupinder Parmar et al, Data, Data Everywhere: A Guide for Pretraining Dataset Construction, EMNLP, Nov. 2024.
• Katherine Lee et al, “Deduplicating training data makes language models better,” ACL 2022. 
• Stanford CS336: Language Modeling from Scratch, Spring 2024, by Profs. Tatsunori Hashimoto,  Percy Liang, 

https://stanford-cs336.github.io/spring2024/
• Stanford CS229S: Systems for Machine Learning, Fall 2023
• by Profs. Azalia Mirhoseini, Simran Arora, https://cs229s.stanford.edu/fall2023/
• Yann Dubois, “Introduction to Building LLMs,”  Guest Lecture for Stanford CS229 Machine Learning, Aug 13, 2024, 

https://www.youtube.com/watch?v=9vM4p9NN0Ts ; 
https://drive.google.com/file/d/1B46VFrqFAPAEj3kaCrBAtQqeh2_Ztawl/view?usp=sharing

• UPenn CIS7000: Large Language Models, Fall 2024
• by Prof. Mayur Naik, https://llm-class.github.io/schedule.html

• CUHK-SZ CSC6203: Large Language Models, Fall 2024
• by Prof. Benyou Wang, https://llm-course.github.io ; https://github.com/FreedomIntelligence/CSC6203-LLM

• Dr. Andrej Karpathy, Intro to LLMs, Nov. 2023 
• https://drive.google.com/file/d/1pxx_ZI7O-Nwl7ZLNk5hI3WzAsTLwvNU7
• Dr. Andrej Karpathy, “Let’s build the GPT Tokenizer”, https://youtu.be/zduSFxRajkE?si=UdADr8BRtHpBctPu
• Prof. Danqi Chen (Princeton), “Training Large Language Models; Practices and Research Questions,”  Talk for Simon Institute 

of the Theory of Computing, Sept 2024, https://simons.berkeley.edu/talks/danqi-chen-princeton-university-2024-09-05
• Stanford CS25: Transformer United V4, Spring 2024, https://web.stanford.edu/class/cs25/

• Instructors: Div Garg, Steven Feng, Seonghee Lee, Emily Bunnapradist, Faculty Advisor: Prof. Chris Manning, 
• Overview Slides 

https://docs.google.com/presentation/d/1oXPs3LXtIVIsVbwTyGjAWj_aWvak9c1uNC4uhkS6glk/edit?usp=sharing
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Stanford CS25: Transformer United V4, Spring 2024, https://web.stanford.edu/class/cs25/
Instructors: Div Garg, Steven Feng, Seonghee Lee, Emily Bunnapradist ; Faculty Advisor: Prof. Chris Manning, 

Stanford CS336: Language Modeling from Scratch, Spring 2024
by Profs. Tatsunori Hashimoto,  Percy Liang, https://stanford-cs336.github.io/spring2024/

Stanford CS324: Advances in Foundation Models, Winter 2023
by Profs. Chris Re, Percy Liang, Tatsunori Hashimoto, https://stanford-cs324.github.io/winter2023/

Stanford CS224N: Natural Language Processing with Deep Learning, Winter 2021
by Prof. Chris Manning, https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/

Stanford CS229S: Systems for Machine Learning, Fall 2023
by Profs. Azalia Mirhoseini, Simran Arora, https://cs229s.stanford.edu/fall2023/

Stanford CS231n: Deep Learning for Computer Vision, Spring 2023
by Prof. Fei-fei Li, https://cs231n.stanford.edu/slides/2023/

CMU 11-667: Large Language Models: Methods and Applications, Fall 2024
by Profs. Chenyan Xiong and Daphne Ippolito,  https://cmu-llms.org

CMU 15-442/15-642: Machine Learning Systems, Spring 2024
by Profs. Tianqi Chen and Zhihao Jia, https://mlsyscourse.org

UPenn CIS7000: Large Language Models, Fall 2024
by Prof. Mayur Naik, https://llm-class.github.io/schedule.html

Related Courses
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ETH 263-5354-00L: Large Language Models,  Spring 2023
by Profs. Ryan Cotterell, Mrinmaya Sachan, Florian Tramer, Ce Zhang, https://rycolab.io/classes/llm-s23/

Princeton COS597R: Deep Dive into Large Language Models, Fall 2024
by Prof. Danqi Chen and Sanjeev Arora, https://princeton-cos597r.github.io

Princeton COS597G: Understanding Large Language Models, Fall 2022
by Prof. Danqi Chen, https://www.cs.princeton.edu/courses/archive/fall22/cos597G/

UC Berkeley CS294: AI-Sys, Spring 2022
by Profs. Joseph E. Gonzalez and Amir Gholami, https://ucbrise.github.io/cs294-ai-sys-sp22/

UC Berkeley CS294-162: AI-Systems (LLM Edition), Fall 2023
by Profs. Joseph E. Gonzalez and Matei Zaharia, https://learning-systems.notion.site/AI-Systems-LLM-Edition-294-162-Fall-2023-
661887583bd340fa851e6a8da8e29abb

UC Berkeley CS294/194-196 Large Language Model Agents, Fall 2024
by Prof. Dawn Song and Dr. Xinyun Chen, https://rdi.berkeley.edu/llm-agents/f24

UC Berkeley CS294/194-280 Advanced Large Language Model Agents, Spring 2025 
by Prof. Dawn Song & Dr. Xinyun Chen, https://rdi.berkeley.edu/adv-llm-agents/sp25 https://llmagents-learning.org/sp25

UWaterloo CS886: Recent Advances on Foundation Models, Winter 2024
by Prof. Wenhu Chen, https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/

University of Mannheim: IE686: Large Language Models and Agents, Fall 2024
by  Prof. Christian Bizer and Ralph Peeters, https://www.uni-mannheim.de/dws/teaching/course-details/courses-for-master-candidates/ie-686-large-
language-models-and-agents/

MIT 6.5940: TinyML and Efficient Deep Learning Computing, Fall 2024
by Prof. Song Han, https://hanlab.mit.edu/courses/2024-fall-65940

MIT 6.S978: Deep Generative Models, Fall 2024
by Prof. Kaiming He, https://mit-6s978.github.io/schedule.html

CUHK-SZ CSC6203: Large Language Models, Fall 2024
by Prof. Benyou Wang, https://llm-course.github.io ; https://github.com/FreedomIntelligence/CSC6203-LLM

More Related Courses
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How to make (train) a LLM ? 
Think of it like compressing the internet.

6000 GPUs for 12 days, ~$2M
~1e24 FLOPS

Chunk of the internet, 
~10 TB of Data

~140GB file

*Numbers for Llama 2 70B ONLY



Pretraining:

“The model is trained at massive scale using 
straightforward tasks such as next-word prediction”



How (where) to learn Best Current Practices ?

● Llama 3.1 technical report (arXiv 2407.21783) 2024/7/23 
● Gemma 2 technical report (arXiv 2408.00118) 2024/7/31 
● Qwen2 technical report (arXiv 2407.10671) 2024/7/15 
● Apple Intelligence technical report (arXiv 2407.21075) 2024/7/29 
● OLMo paper (arXiv 2402.00838) 2024/2/1 
● Phi-3 paper (arXiv 2404.14219) 2024/4/24 
● Gemini paper (arXiv 2312.11805) 2023/12/19 
● Mistral 7B (arXiv 2310.06825) 2023/10/10



Outline of Pretraining

1. Case Studies of existing datasets
2. Data curation strategies and their downstream effects

a. Dataset Age
b. Data Composition
c. Quality/ Toxicity Content filtering
d. Deduplication 

3. Tokenization
4. Distributed and Parallel Training of Deep Neural Networks



Pretraining

● Step 1. Prepare a high-quality, tokenized pre-training corpus (internet 
scale)

● Step 2. Decide (Transformer) model architecture and context window size
● Step 3. Fit the model on the pre-training corpus to maximize log-likelihood:



Data Preparation Pipeline for Pretraining

W. Zhao et al. A Survey of Large Language Models. 2023.

A typical data preparation pipeline for pre-training LLMs:

https://arxiv.org/abs/2303.18223


The network “dreams” Internet documents:

Java code dream Amazon product dream (?) Wikipedia article dream



Pretraining Data Quality Reduces Reliance on Compute

S. Hooker. On the Limitations of Compute Thresholds as a Governance Strategy. 2024.

https://arxiv.org/abs/2407.05694v1


Datasets
Source: A Pre-trainer’s Guide to Training Data, https://arxiv.org/abs/2305.13169



LLMs require large, high-quality, and diverse training data

● Data Source – web 
● Data Processing / Cleaning 

○ language detector
○ deduplication
○ quality
○ toxicity

Data for pre-training language models



Crawling The Web 

We do not have a list of all accessible URLs

Basic Crawler

1. start from a given seed set of URLs
2. progressively fetch the web pages and find further outlinking URLs 
3. store the fetched pages in some indexing system and repeat step 2

distribute the process over bunch of machines, possibly geographically

industry standard crawlers are well engineered to make this process efficient



Pretraining Datasets for LLMs



CommonCrawl (CC)

● non-profit organization
● maintains a free, open repository of web crawl data
● markup + non-text content has been removed from scraped HTML files
● generates a crawl of data every month freely available 
● crawled petabytes of dataset so far
● respect nofollow and robots.txt policies!



● crawling process runs for 10-12 days over 100 EC2 machines (in 2016)
● used to get about 150-200 Tib content* 

● October 2023 crawl
○ crawled for about 16 days!
○ 3.4 billion web pages 
○ 456 TiB uncompressed content 

● Google search index is over 100,000 Tib in size!!

CommonCrawl

https://groups.google.com/g/common-crawl/c/xmSZX85cRjg/m/RYrdBn2EBAAJ
https://commoncrawl.org/blog/september-october-2023-crawl-archive-now-available*commoncrawl also crawls pdfs, images. content and text are used to distinguish this

https://groups.google.com/g/common-crawl/c/xmSZX85cRjg/m/RYrdBn2EBAAJ
https://commoncrawl.org/blog/september-october-2023-crawl-archive-now-available


CommonCrawl over time

https://en.wikipedia.org/wiki/Common_Crawl

https://en.wikipedia.org/wiki/Common_Crawl


CommonCrawl over time

● very low similarity across crawls
● possibly long tail of less popular urls

https://commoncrawl.github.io/cc-crawl-statistics/plots/crawloverlap

https://commoncrawl.github.io/cc-crawl-statistics/plots/crawloverlap


C4 Dataset

- A colossal, cleaned version of Common Crawl's web crawl corpus.
- What is Common Crawl?

- Non-profit founded in 2007
- Hosts free, open repository of web crawl data (markup + non-text content has been removed 

from scraped HTML files)
- 250 billion pages spanning 16 years, 3-5 billion new pages added each month

- Introduced in the T5 paper (studied earlier this semester)
- T5 did an extra toxicity filtering step but the authors of this paper forego it

https://commoncrawl.org/


Case Studies – BERT (and GPT-1)

● pre-training with 3 billion tokens
○ BooksCorpus (800M words)
○ English Wikipedia (2500M words)
○ GPT-1 used BooksCorpus only



Case Studies – GPT-2

● proposed webtext (closed source, replicated as openwebtext)

● wanted to move away from the trend of single-task training approaches
● “A promising source of diverse and nearly unlimited text is web scrapes such 

as Common Crawl….they have significant data quality issues”
● created a web-scrape using upvoted outbound links on reddit with high karma

● results in – 45M links and 40GB of text



Case Studies – T5 (from Google)

Introduced the C4 dataset (Colossal Clean Crawled Corpus)

Identify small classes of issues in common crawl

● majority is gibberish or boiler-plate menus, error messages
● unhelpful data – offensive language, placeholder, etc.

proposed cleaning strategies and collected 750GB of text dataset



Introduced the C4 dataset (Colossal Clean Crawled Corpus)

Used many ad-hoc heuristics for cleaning. Removed 

● pages with offensive words
● lines with Javascript mention (since javascript not enabled warning shows up)
● pages with phrase lorem ipsum
● pages with `{` since it shows up in code (not natural language)
● pages with boilerplate policy notices like “terms of use”, “use cookies”...
● pages not detected as english by langdetect

Case Studies – T5



Case Studies – Palm

● 780B tokens
● multilingual dataset!



Case Studies – Chinchilla

● highlighted under-training issues in existing models
● 10 TB of text content
● 1.4 Trillion tokens



Case Studies – Pile

● Collected open source language 
modelling dataset sizing 825 GiB 

● Constructed it from 22 diverse, 
high-quality subsets

● Top-5 subsets
○ commoncrawl
○ pubmed central
○ books
○ arxiv
○ openwebtext

https://arxiv.org/abs/2101.00027

https://arxiv.org/abs/2101.00027
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PhilPapers
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FreeLaw



EuorParl
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● pileCC: CC processed by jusText

https://github.com/miso-belica/jusText


Case Studies – RedPajama

● open source replication of LLaMa pre-training data



Other open-source pre-training datasets

RedPajama v2

● 30T tokens dataset
● annotated with precomputed “quality” heuristics

Task-specific datasets

● The Stack – programs (primarily) extracted from github
● OpenWebMath – math data extracted from webpages and papers

○ need to handle mathjax rendering issues
● WikiTables, TabLib, GitTables – datasets for table representation learning



Open Research Questions for Data Preparation ?

● How to curate and filter High-Quality pre-training data ?
● What is a good data mixture ?
● What is a good training recipe ? How many stages of training ? What data to use ?
● Scaling Laws for determining model sizes and data mix ?
● How and when to use Synthetic data ?



A Pretrainer’s Guide to Training Data

Measuring the Effects of Data Age, Domain Coverage, 
Quality, & Toxicity

Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, 
Denny Zhou, Jason Wei, Kevin Robinson, David Mimno, Daphne Ippolito 

of MIT, Cornell, Google Research, OpenAI

ACL 2024
Naman and Kevin



1. Study of how common data design decisions (dataset age and composition, 
content filtering strategies, etc.) affect model performance

2. Evaluation on downstream tasks using decoder-only LMs
3. Summarization and recommendations given based on findings

Introduction



Pretrain Dataset Curation Pipeline

Source: Gopher paper



Common Practice in Pretraining Data Curation



Research Objectives and the Approach of [Longpre et al, ACL2024] 

● To evaluate how dataset design choices impact the final model

● Evaluate language models pre-trained on variants of training sets

● Using C4 and Pile and their Variants as Datasets

● Use two language models (T5 variants)
○ LM-XL (1.5B)
○ LM-small (20M)



Summary of Approach



Data Curation Choices

Deduplication Dataset Domains

Quality Filters Toxicity Filters

Dataset Age



● Effects of Data Age

● Effects of Quality Filter and Toxicity Filter

● Effects of Data Composition

Focus of Study



Study the Effect of Dataset Age

Experiment Setup

● collected four variants of C4
● different snapshots of common-

crawl with C4 recipe

Critique - CommonCrawl size has 
increased  steadily over the years



Experiment Setup

● construct four pre-trained models for each C4 version
● evaluate on tasks with test sets split by year
● measure temporal misalignment in performance 

Study the Effect of Dataset Age



Data Age: Illustrative Dataset



Evaluation - PubCLS Dataset 

News source classification task

Accuracies for test set split over test 
split from different years

● pretraining data age somewhat 
correlated with evaluation 
metrics by age (0.61 pearson)

A sample experiment on studying effects of Dataset Age



Illustrative Results of Effect of Data Age



Data drift

● evaluating on “newer data” hurts
○ model trained on “older data”  doesn’t know how to answer questions about covid

● evaluating on “older data” hurts
○ model trained on “newer data” doesn’t know how to answer questions about obama era!? 

● another domain
○ github data starting from 2022 is proliferated with openai calls!

Observations on The Effect of Dataset Age



Key Findings of Data Age Effects

4. The effects of pretraining temporal 
misalignment are stronger for larger 
models than smaller models



Content Filtering based on Toxicity and Quality



Background on Quality and Toxicity

● Modern LLM training workflows typically employ some form of quality and/or 
toxicity filtering

○ Quality heuristics are applied to web crawl data to filter out “low-quality” data
■ Newer models (e.g. GPT-3 and PaLM) now use quality classifiers

○ Toxic content is removed by applying heuristics or classifiers (e.g. SafeSearch filters)
● Definition

○ toxic = text that is profane, explicit, insulting, or threatening
○ quality  = text similar to known “high-quality” sources



Quality and Toxicity Filtering Experiment Setup

● Quality filter:
○ Classifier employed by GLaM, PaLM, Chinchilla/Gopher
○ Assigns a score from 0 (Highest Quality) to 1 (Lowest Quality).
○ A “feature hash based linear classifier for inference speed”
○ Trained to classify between curated text (wiki, books + few select websites) and other.

● Toxic filter:
○ Jigsaw’s Perspective API
○ Trained on comments from online forums, labeled by annotators. Shown to be imperfect (reflects 

biases of annotators, false positives, etc), it has been shown to be far more accurate than rule-based 
classifiers.

○ Assigns a score from 0 (unlikely to be toxic) to 1 (very likely to be toxic).
● Implement toxic and quality filtering methods at different thresholds to vary the 

quantity of low-quality/toxic content present in C4/Pile → Analyze effect on 
downstream tasks.



How to create Toxic-Filtered Dataset ?



Considerations for Toxicity Filtering



Toxicity: Tradeoff b/w Identification and Generation

NB: Inverse Toxic Filter => Filter out Least Toxic documents



Quality Filtering’s Effect on Toxicity Evals
● Same Setup, Baseline and Evals as Toxicity Filtering 

○ EXCEPT Filter Pretraining Dataset by Quality instead of Toxicity
● But how to Measure “Quality” ?

○ An example:



Quality Filtering’s Effect on Toxicity Evals

● Finding: Quality Filtering Improves Toxicity Identification



Impact of Quality Filters on Pretrained Models

NB: Inverse Quality Filter => Filter out Highest Quality documents
• Surprising Finding: Quality Filtering increases both capability of   

Toxic Generation and Toxic Identification !



Effect of Quality & Toxicity Filters on 
Downstream Task Performance



Effect of Quality & Toxicity Filters on 
Downstream Task Performance

NB: Inverse Quality Filter => Filter out Highest Quality documents
Inverse Toxic Filter => Filter out Least Toxic documents



Impact of Quality & Toxicity Filters on Pretrained Models



Recommendations for Quality and Toxicity Filtering

● If the Goal is to Identify Toxic Text, then don’t use Toxicity Filters

● Use Quality Filters generally improves performance despite removing 
training data

● Should Investigate other kinds of Quality Filtering, not just Similarity to 
Books and Wikipedia



● Pile combines multiple different dataset domains
● Identify “High quality” domains would help model perform 

better
e.g. code data is often linked to “reasoning” capabilities 

of LLMs1

Goal of Dataset Domains/Composition Experiments

1. At Which Training Stage Does Code Data Help LLMs Reasoning?

https://arxiv.org/abs/2309.16298v2


● Pile comprise of 22 different domains. Sub-group it into 9 high-level classes:
○ CommonCrawl, Web, Wikipedia, Books, Academic, Biomed, Legal, Code, Social/ Dialog

● Pre-train a model on dataset without one of the nice components

● Critique - the different components

● Dataset have different sizes
● Difference characteristics, relationships with test set
● Evaluating LLMs is challenging
● What if models with significantly larger capacity were used?

Dataset Domains/Composition Experiment Setup



Effects of Dataset Domains/Composition on QA Tasks

Observations:
• Quantity and Diversity both come into play ; Larger Components like CommonCrawl (CC) are likely to be diverse and thus correlated• Removing Books & Common Crawl domains hurt downstream performance most.
• Targeted Data helps for Targeted Evaluation.
Recommendations:
• Train on as much data as possible; Quantity matters more than Domain Composition• Prioritize Heterogeneous Data Sources



Impact of Data Curation on Data Characteristics



Summary



Deduplication

based on the paper: 
Katherine Lee et al, “Deduplicating Training Data Makes Language Models 

Better,” ACL 2022. 



- “Deduplicating Training Data Makes Language Models Better”
- Timeline:

- after C4
- concurrent with GPT-3
- Used by PALM, Gopher/Chinchilla

- Why is this important?
- Efficiency: Can train on more high-quality tokens for same budget
- Reduce overfitting by eliminating train-test leakage
- + other benefits explored in Anthropic paper

- Challenges
- How to scale to massive datasets
- Naive implementation (e.g. exact match) doesn’t work for all types of data

Deduplication



Advantages

- Reduce rate of emitting memorized training data in unprompted setting
- Reduce train-test overlap → reduce over-estimation of model accuracy
- Increase efficiency: reduce train time in terms of time, $
- Does not hurt perplexity



Focus of the Dedup paper [Lee et al, ACL 2022]

- Focused on how duplicate text in train/validation impacts model perplexity 
and the extend of memorized content on generated text

- Not on downstream performance



Exact string matching, aka “naive” dedup

Small interspersed differences make exact duplicate matching less effective



Proposed Algorithms in [Lee et al, ACL 2022]

● Exact substring deduplication (ExactSubstr)
● Approximate matching with MinHash (NearDup)



Exact Substring Duplication (ExactSubstr)

- Idea: 2 examples are duplicates if they share a sufficiently long substring

- There exists a linear runtime implementation of exact substring matching that 
uses a Suffix Array:

1. Practical space-efficient suffix array construction algorithms (SACAs) exist that 
require worst-case time linear in string length;

- SACAs exist that are even faster in practice, though with super linear worst case construction time 
requirements;

2.   Suffix arrays allow the identification of duplicates in linear time
- Hundreds of research papers on the construction and applications of suffix trees and suffix arrays. 

Refer to the survey on Suffix Array Construction algorithms by Puglisi, Smyth, Turpin [PST07] 

N.B.: Suffix arrays have become the data structure of choice for many, if not all, of the 
string processing problems to which suffix tree methodology is applicable.



Suffix Array - Introduction

Source: https://www.mi.fu-berlin.de/wiki/pub/ABI/RnaSeqP4/suffix-array.pdf



Suffix Array – An Example:



Suffix Array

● Suffix array for sequence S is a lexicographically-ordered list of all suffixes 
contained in a sequence: A(S) = argsort(all_suffixes(S))

● 10-100x more memory efficient than suffix tree
● Procedure:

○ Concat entire dataset into sequence S
○ Construct A
○ Linearly scan A from beginning to end looking for sequences A_i, A_i+1 that share a common 

prefix of at least some threshold length
○ Easy to parallelize



1. Parallel partial suffix array construction
a. O(N) work, O(N/K) wall-clock.

2. Parallel merge of partial suffix arrays
a. O(N m log(K)) - m = average length of prefix match

3. Computational Analysis
a. 96 cores, 768GB of memory
b. 350GB C4 takes under 12 hours wall clock to build suffix array, 1 hour to dedup.
c. Suffix array for 350GB has 8x overhead (1.5TB)

Parallelized Implementation



Approximate Matching (NearDup)

- Uses MinHash, an approximate matching algorithm widely used in dedup task
- Represent documents by a set of n-grams, then use hash functions to 

approximate the Jaccard Index
- Jaccard Index (JI) = (size of intersection / size of union)

- 0 when sets are disjoint, 1 when equal, in [0, 1] when otherwise
- If Jaccard index is sufficiently high, documents are considered approximately 

matches of each other
- To efficiently approximate JI, MinHash constructs document signatures by sorting 

the n-grams via hash functions and keeping k smallest.

For details, refer to ”Locality Sensitive Hashing (LSH)” in IERG4300 Lecture Notes or  the 
"MMDS” textbook by Leskovec, Rajaraman and Ullman



Results

1. Dedup results: 3% to 14% near duplicates on C4 and RealNews, Wiki < 1% 
near dups

2. Leakage: 4.6% of the C4 validation set and 14.4% of the RealNews validation 
set examples had an approximate duplicate in their respective training sets



Data, Data Everywhere:
A Guide for Pretraining Dataset Construction

Jupinder Parmar*, Shrimai Prabhumoye, Joseph Jennings,
Bo Liu, Aastha Jhunjhunwala, ZhilinWang, Mostofa Patwary,

Mohammad Shoeybi , Bryan Catanzaro
of NVIDIA

EMNLP 2024
Naman and Kevin



Pretraining Data Processing Pipeline under Study



Data Sources used in this Study [Parmar et al EMNLP 2024]



Data Sources used in Ablation Study



Data Sources used in Ablation Study



Operation 
Threshold Settings 
for Heuristics



Operation Threshold Settings for Heuristics



Effects of Data Curation 



Effects of Data Selection using Domain Selection via Importance Sampling 
(DSIR) [Xie et al, NeurIPS 2023] 

Q1: How does naïve application w/ 
recommended settings of DSIR perform ?
Q2: Can we identify better settings for DSIR ?

Note: DSIR [Xie et al, NeurIPS 2023] takes as input a raw dataset, along with a target dataset of known high quality examples, 
and then uses importance resampling to select examples from the raw dataset that are distributed like the target by utilizing a 
bag of hashed n-gram models to match the n-gram frequencies of the selected data and the target.



Effects of Data Sampling Methodologies:
UniMax vs. Alpha Sampling vs. DoReMi



Attribute Analysis



Attribute Analysis (cont’d)



Attribute Analysis
(cont’d)



Attribute Analysis
(cont’d)



Attributes in Sampling and Selection



Data Curation Ablations



A recent work from NeurIPS 2024 to “improve dataset development for benchmarking  and datasets”.



Tokenization



Tokenization

What is Tokenization ?
● Tokenization is the process of breaking down a piece of text, like a sentence or 

a paragraph, into individual words or “tokens.” 
● These tokens are the basic building blocks of language, and tokenization helps 

computers understand and process human language by splitting it into 
manageable units.

Why we need tokenization ? 
● More general than words (e.g. to handle typos)
● Shorter sequences than with characters => allow smaller context window

Key Idea of Tokenizer:
● See Tokens as Common Subsequences 



Common Methods of Tokenization



Tokenization Methods



Word-level Tokenization

Method:
● Rule-based – split text by spaces, punctuation and other hand-written rules

Challenges:
● Open Vocabulary Problem

○ Many words may never appear in training data. They become [UNK]
○ This is more severe in some languages, e.g. languages that concatenate words

● Typo’ed words also get tokenized to [UNK]



Character-level Tokenization
● When treating characters as your basic units, unknown (sub)tokens can still exist
Example:

If your basic units are [A-Za-z], Chinese characters cannot be tokenized.
Solution:

Byte-level encoding, e.g. BPE, that uses raw bytes (e.g. Unicode bytes, as basic 
character set



Subword modeling



Subword modeling
● Subword modeling in NLP encompasses a wide range of methods for reasoning about 

structure below the word level. (Parts of words, characters, bytes.)

● The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).
● At training and testing time, each word is split into a sequence of known subwords.

Advantages:
● Vocabulary is built dynamically, with controlled vocabulary size – a pre-defined 

hyperparameter as a design choice
○ Frequent words key whole and get assigned their own token
○ Rare words are split into sub-words ; more observations on sub-words
○ Utilization of morphology information



Subword modeling-based
Tokenization methods

● Byte-Pair Encoding (BPE) [Gage 1994]: 
○ originally used for Machine Translation

● WordPiece
● Unigram
● SentencePiece



Byte Pair Encoding (BPE) and Unigram Subword Tokenizers

For details, see https://huggingface.co/learn/nlp-course/en/chapter6/7



Example of Byte Pair Encoding (BPE)

Steps:

1. Take Large Corpus of Text. 
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Example of Byte Pair Encoding (BPE)

Steps:

1. Take Large Corpus of Text.
2. Start with One Token per Character
3. Merge Common Pairs of Tokens into a 

Token
4. Repeat until the desirable vocab size 

has been reached or all merged



Unigram Tokenizers



Example of a Bad Tokenizer LLaMA for Chinese

Source: 
Yiming Cui. et.al. EFFICIENT AND EFFECTIVE TEXT ENCODING FOR CHINESE LLAMA AND 
ALPACA. https://arxiv.org/pdf/2304.08177.pdf



Tokenizers in Practice



SentencePiece

References: https://github.com/google/sentencepiece ; https://github.com/openai/tiktoken

https://github.com/google/sentencepiece
https://github.com/openai/tiktoken


NFKC Normalization



Whitespace and Number related Hacks



Typical Vocabulary Sizes



Some Sample Dataset sizes in # of Tokens

- PALM: 780 billion tokens
- GLAM: 1.6 trillion
- Gopher: 300 billion
- GPT-3: 300 billion
- Chinchilla: 1.4 Trillion tokens



Chinchilla 

Gopher 
Palm



A Broader Sense of “Token”

Source: Alexey Dosovitskiy. et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. https://arxiv.org/abs/2010.11929
Xin zhang et.al. SpeechTokenizer: Unified Speech Tokenizer for Speech Language Models. https://0nutation.github.io/SpeechTokenizer.github.io/

Genes

Speech tokens

Image tokens



Tokenizer Summary



How Large is Large: No. of Tokens (D) for training LLMs
Trillions of Tokens



How Large is Large ?
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How Large is Large: No. of Parameters (N) in LLMs



LLM Scaling Laws
Performance of LLMs is a smooth, well-behaved, predictable function of:
- N, the number of parameters in the network
- D, the amount of text we train on
And the trends do not show signs of “topping out”

=> We can expect more intelligence by scaling

[Training Compute-Optimal Large Language Models]



Sevilla et al., “Compute Trends Across Three Eras of Machine Learning", 2022
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Deep Learning: 32x every 2 years!

Moore’s Law: 2x every 2 years!
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Large Computation Cost: AI models vs. Moore’s Law



Chinchilla Scaling Law:

For every doubling of model size, 
the number of training tokens must 

also be doubled.

Pre-Training: Scaling Laws

Given a fixed compute budget, what is the optimal model size and training
dataset size for training a transformer LM?

J. Hoffmann et al. Training Compute-Optimal Large Language Models. 2022.

https://arxiv.org/abs/2203.15556


LLM Scaling Laws

Source: Training Compute-Optimal Large Language Models, DeepMind, https://arxiv.org/pdf/2203.15556, Mar 2022.

For constant amount of Training Compute, Optimal Ratio of D/ N ~= 20

https://arxiv.org/pdf/2203.15556


LLM Scaling Laws

• Before 2022, most of the largest LLMs were 
“Under Trained” (with D/N << 20)

Source: Training Compute-Optimal Large Language Models, DeepMind, https://arxiv.org/pdf/2203.15556, Mar 2022.

https://arxiv.org/pdf/2203.15556
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LLMs Data from LifeArchitect.ai (Jan 2025)

144Source: https://docs.google.com/spreadsheets/d/1kc262HZSMAWI6FVsh0zJwbB-ooYvzhCHaHcNUiA0_hY



Leaderboard of LLM Chatbot Arena

Crowdsourced platform where humans vote on pairwise comparisons of different LLMs 
(akin to Elo rating system in Chess).

https://lmarena.ai/


What’s Next:   Post-Training



Pre-training vs. Finetuning/ Post-Training/ Adaptation

Translate cheese from 
English to French 

Translate cheese from English to Spanish

Translate cheese from French to English

The French word for cheese is " fromage".
The pronunciation is as follows:

froh-MAHZH

Response from a pre-trained model Response from a finetuned modelPrompt

“Pre-trained” LLMs are trained solely based on next word prediction on vast 
amounts of text data (e.g. the internet). 

They need further “finetuning” to be able to follow instructions and be useful!


